E-3904

B. C. A. (Part II) EXAMINATION, 2021
(Old Course)
Paper First
NUMERICAL ANALYSIS

(201)

Time : Three Hours]
[Maximum Marks : 50
Note : All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks. Simple/Scientific calculator is allowed.

Unit-I

1. (a) Using bisection method, find real roots of $x^{3}-x-1=0$.
(b) Find the root of $x^{2}-5 x+2=0$ correct to five decimal places, by Newton-Raphson method.
(c) Solve the equation $2 x^{3}+x^{2}-7 x-6=0$ when the difference of two roots is 3 .
P. T. O.

Unit-II

2. (a) Apply Gauss-Jardon method to find the inverse of the matrix :

$$
A=\left[\begin{array}{lll}
2 & 6 & 6 \\
2 & 8 & 6 \\
2 & 6 & 8
\end{array}\right]
$$

(b) Find Choleski's method, the inverse of matrix :

$$
A=\left[\begin{array}{rrr}
1 & 2 & 6 \\
2 & 5 & 15 \\
6 & 15 & 46
\end{array}\right]
$$

(c) Find the characteristic equation and eigen value of the matrix :

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
\text { Unit-III }
\end{gathered}
$$

3. (a) The values of x and y are given as below:

x	y
5	12
6	13
9	14
11	16

Find the value of y when $x=10$.
(b) Estimate the sale for 1966 using the following table :

Year	Sale (in thousands)
1931	12
1941	15
1951	20
1961	27
1971	39
1981	52

(c) Given $\log _{10} 654=2.8156, \log _{10} 658=2.8182$, $\log _{10} 659=2.8189, \quad \log _{10} 661=2.8202$. Find $\log _{10} 656$ using Newton divided difference interpolation formula.

Unit-IV

4. (a) Calculate the approximate value of $\int_{0}^{\frac{\pi}{2}} \sin x d x$ by Simpson's $1 / 3$ rule, using 11 ordinates.
(b) Explain Newton-Cote's formula.
P. T. O.
(c) Explain Weddle's rule taking 12th interval with suitable example.

Unit-V

5. (a) Given $\frac{d y}{d x}=1+x y$ with the initial condition that $y=1$ when $x=0$. Compute $y 0.1$ correct to four decimal places by using Taylor's series method.
(b) Solve the equation $\frac{d y}{d x}=x+y$, with initial condition y $0=1$ by Runge-Kutta's rule, from $x=0$ to $x=0.4$ with $h=0.1$.
(c) Use modified Euler's method to compute y for $x=0.05$. Give that $\frac{d y}{d x}=x+y$ with initial conditions $x_{0}=0 ; y_{0}=1$ result correct upto three decimal places.
